ECE 307 – Techniques for Engineering Decisions

14. Simulation

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

SIMULATION

- □ Simulation provides a *systematic* approach for dealing with uncertainty by "*flipping a coin*" or "*rolling a die*" to represent the outcome or realization of each uncertain event
- ☐ In many real world situations, simulation may be the *only viable means* to quantitatively deal with a problem under uncertainty
- ☐ Effective simulation requires implementation of appropriate approximations at many and, sometimes, at possibly every stage of the problem

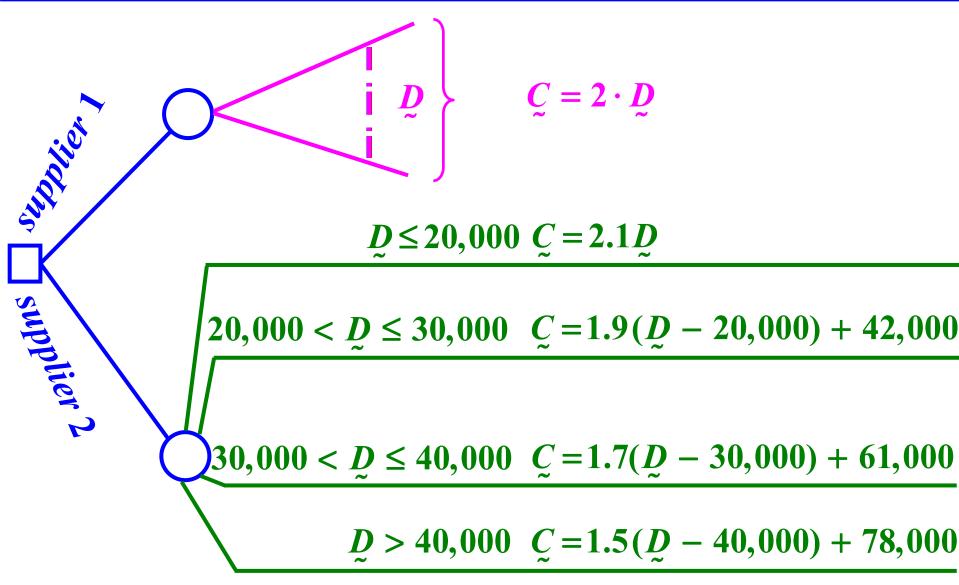
- ☐ The problem is concerned with the purchase of fabric by a fashion designer
- ☐ The two choices offered by textile suppliers are:
 - **supplier 1:** fixed price constant 2 \$/yd
 - supplier 2: variable price dependent on quantity at
 - 2.10 \$/yd for the first 20,000 yd;
 - 1.90 \$/yd for the next 10,000 yd;
 - 1.70 \$/yd for the next 10,000 yd;
 - 1.50 \$/yd thereafter

but determines an appropriate model is:

$$D \sim \mathcal{N}(25,000 \ yd, 5,000 \ yd)$$

☐ The decision may be represented in form of the

following decision branches:



- \square Supplier 1 has a simple linear cost function C
- ☐ Supplier 2 has a more complicated scheme to
 - evaluate costs: in effect, the range of the demand
 - and the corresponding probability for D to be in a
 - particular segment of the range must be known,
 - as well as the expected value of D for each range

- We simulate the situation in the decision tree by
 - "drawing multiple samples from the appropriate population"
- We systematically tabulate the results and evaluate the required statistics
- ☐ The algorithm for the simulation consists of a few simple steps which are repeated until an

appropriatly sized sample is constructed

BASIC ALGORITHM

- Step θ : store the distribution $\mathcal{N}\left(25,000,\ 5,000\right)$; determine \overline{k} , the maximum number of draws; set $k=\theta$
- Step 1: if $k > \overline{k}$, stop; else set k = k + 1
- Step 2: draw a random sample from the normal distribution $\mathcal{N}\left(25,000,\ 5,000\right)$
- Step 3: evaluate the outcomes on both branches; enter each outcome into the data base and return to Step 1

- □ Application of the algorithm allows the determination of the histogram of the cost figures and then the evaluation of the expected costs
- ☐ For the assumed demand, for supplier 1, we have

the straightforward case of

$$\mu_{C} = E\{C\} = 2 \cdot E\{D\} = 50,000$$

and

$$\sigma_{c} = 10,000$$

and the use of the algorithm may be bypassed

- ☐ For the supplier 2, the algorithm is applied for the
 - \bar{k} random draws

☐ The actual simulation is an exercise left to the

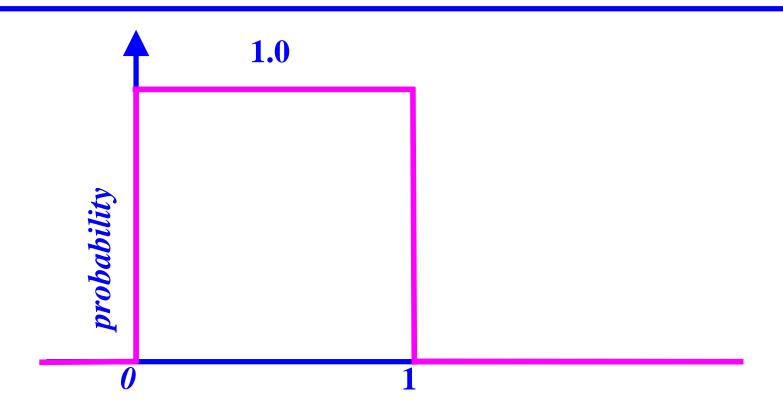
reader

GENERATION OF RANDOM DRAWS

- □ A key issue is the generation of random draws for
 - which we need a random number generator
- ☐ There are various random number generator
 - algorithms
- ☐ One natural scheme is based on the use of a

uniformly distributed r.v. between θ and 1

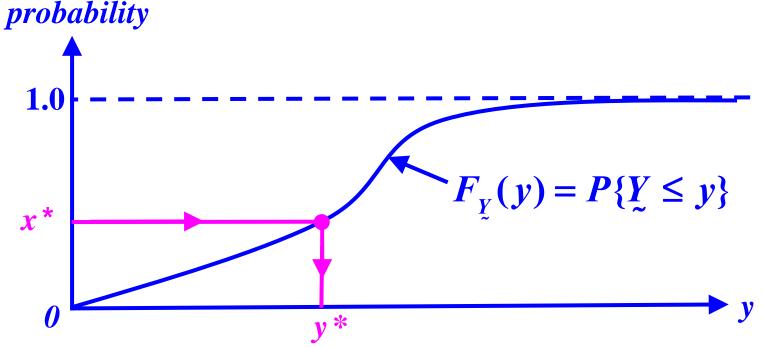
GENERATION OF RANDOM DRAWS



$$X = \begin{cases} x \in [0,1] \text{ with probability } 1\\ x \notin [0,1] \text{ with probability } 0 \end{cases}$$

GENERATION OF RANDOM DRAWS

□ We draw a random value of x, say x^* and work through the c.d.f. $F_{\underline{y}}(y)$ to get the value y^* of the r.v. \underline{y} with $F_{\underline{y}}(y^*) = x^*$



SOFT PRETZEL EXAMPLE

☐ The market size is unknown but we assume that the market size is a normally distributed *r.v.* with

$$\underline{S} \sim \mathcal{N} \left(\underbrace{100,000}_{\mu_{\underline{S}}}, \underbrace{10,000}_{\sigma_{\underline{S}}} \right)$$

- lacktriangle We are interested in determining the fraction F of the market the new company is able to capture
- \square We model the distribution of F using the discrete

distribution tabulated below:

SOFT PRETZEL EXAMPLE

F = x%	$P\{F=x\}$
16	0.15
19	0.35
25	0.35
28	0.15

SOFT PRETZEL EXAMPLE

- ☐ Sales price of a pretzel is \$ 0.50
- □ Variable costs V are represented by a uniformly distributed r.v. in the range [0.08, 0.12] \$/pretzel
- \square Fixed costs C are also random
- ☐ The contributions to profits are given by

$$\Pi = (\underline{S} \cdot \underline{F}) \cdot (0.5 - \underline{V}) - \underline{C}$$

and may be evaluated via simulation

lacksquare We can use simulation to approximate $F_{I\!I}\left(ullet
ight)$

MANUFACTURING CASE STUDY

□ The selection of one of two manufacturing

processes based on net present value (NPV) using

a 3 – year horizon – the current year θ plus the

next two years 1 and 2 - and a 10 % discount rate

☐ The *process* is used to manufacture a product

whose sale price is 8 \$/unit

PROCESS 1 DESCRIPTION

- ☐ This *process* uses the current machinery for
 - manufacturing
- ☐ The annual fixed costs are \$12,000
- ☐ The yearly variable costs are represented by the

r.v.

$$V_{i} \sim \mathcal{N}(4,0.4)$$
 $i = 0,1,2$

PROCESS 1 DESCRIPTION

☐ Machine in the *process* can fail randomly and the

number failures Z_i in year i = 0,1,2 is a r.v. with

$$Z_i \sim Poisson(m=4)$$
 $i = 0,1,2$

- \square Each failure incurs constant costs of \$8,000 over
 - the 3-year period
- lacksquare Total costs are the sum of $igvee V_i$ and $m{8,000} \ m{Z}_i$

PROCESS 1: SALES FORECAST UNCERTAINTY DATA

current year $i = 0$		$next \ year$ $i = 1$		year after next $i = 2$	
d_{o}	$P\left\{ \underset{\sim}{D}_{0} = d_{0} \right\}$	d ₁	$P\left\{ \underset{\sim}{D}_{1}=d_{1}\right\}$	$d_{_2}$	$P\left\{ \underset{\sim}{D}_{2}=d_{2}\right\}$
11,000	0.2	8,000	0.2	4,000	0.1
16,000	0.6	19,000	0.4	21,000	0.5
21,000	0.2	27,000	0.4	37,000	0.4

PROCESS 2: DESCRIPTION

- ☐ Process 2 involves an investment of \$60,000 paid in cash to buy the new equipment and doing away with the worthless current machinery; the fixed costs of \$12,000 per year remain unchanged
- lacktriangle The yearly variable costs V_{\sim}

$$V_{i} \sim \mathcal{N}(\$3.50, \$1.0)$$
 $i = 0, 1, 2$

 \Box The number of machine failures Z_i for year

$$Z_i \sim Poisson (m = 3)$$
 $i = 0, 1, 2$

and the costs per failure are \$6,000

PROCESS 1: SALES FORECAST UNCERTAINTY DATA

current year i = 0		next year $i = 1$		year after next $i = 2$	
d_{o}	$P\left\{ \underset{\sim}{D}_{0}=d_{0}\right\}$	d ₁	$P\left\{ \underset{\sim}{D}_{1}=d_{1}\right\}$	$d_{_2}$	$P\left\{ \underset{\sim}{D}_{2}=d_{2}\right\}$
14,000	0.3	12,000	0.36	9,000	0.4
19,000	0.4	23,000	0.36	26,000	0.1
24,000	0.3	31,000	0.28	42,000	0.5

NET PROFITS

 \square The net profits π_i each year are a function

$$\underline{\pi}_{i} = f\left(\underline{D}_{i}, \underline{V}_{i}, \underline{Z}_{i}\right) \qquad i = 0, 1, 2$$

requires the evaluation of all the possible out-

comes, both
$$E\left\{ ar{\pi}_{i}
ight\}$$
 and $var\left\{ ar{\pi}_{i}
ight\}$ may be estimated

by simulation by drawing an appropriate number

of samples from the underlying distribution

NPV

- ☐ The NPV of these profits needs to be assessed
 - and expressed in terms of the current year 0 dollars
- ☐ The profits are collected at the end of each year or
 - equivalently, at the beginning of the following year
- \square We use the d = 10 % discount factor to express

the
$$var\left\{ \underset{\sim}{\pi}_{i}\right\}$$
 in year θ (current) dollars

NPV

■ We can evaluate for *processes* 1 and 2 the profits for each year; we use superscript to denote the *process*

process 1:
$$\pi_{i}^{1} = 8D_{i} - D_{i}V_{i} - 8,000Z_{i} - 12,000$$

$$i = 0,1,2$$

process 2:
$$\pi_{i}^{2} = 8D_{i} - D_{i}V_{i} - 6,000Z_{i} - 12,000$$

and we also need to account for the \$60,000

investment in year 0 for process 2

NPV

□ The NPV evaluation then is stated as the r.v.

and
$$\prod_{i=0}^{1} = \sum_{i=0}^{2} \pi_{i}^{1} (1.1)^{-(i+1)}$$

$$\lim_{i=0}^{2} = -60,000 + \sum_{i=0}^{2} \pi_{i}^{2} (1.1)^{-(i+1)}$$

□ Simulation is used to evaluate

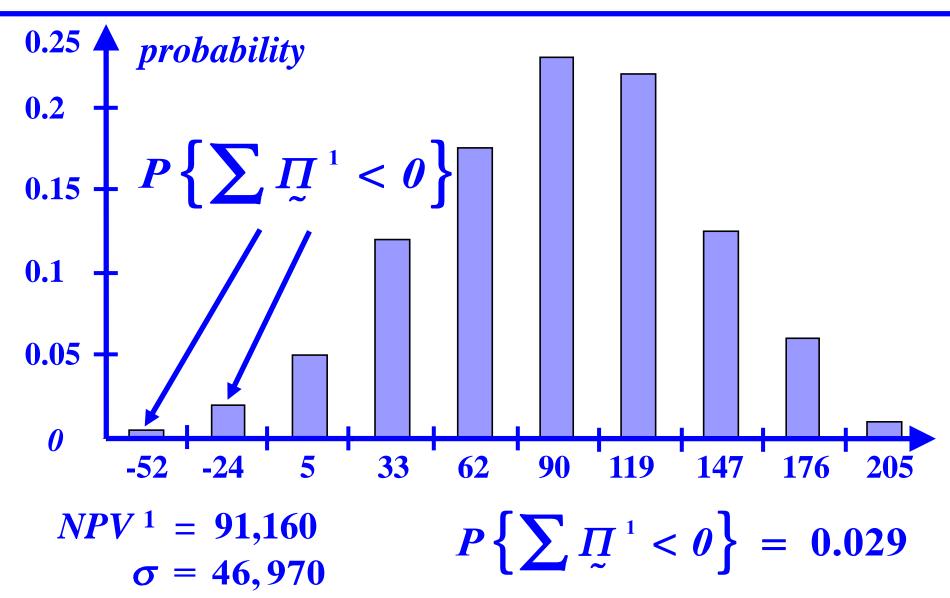
$$NPV^{1} = E\left\{ \prod_{i=1}^{1} \right\} \quad NPV^{2} = E\left\{ \prod_{i=1}^{2} \right\}$$

SIMULATION RESULTS

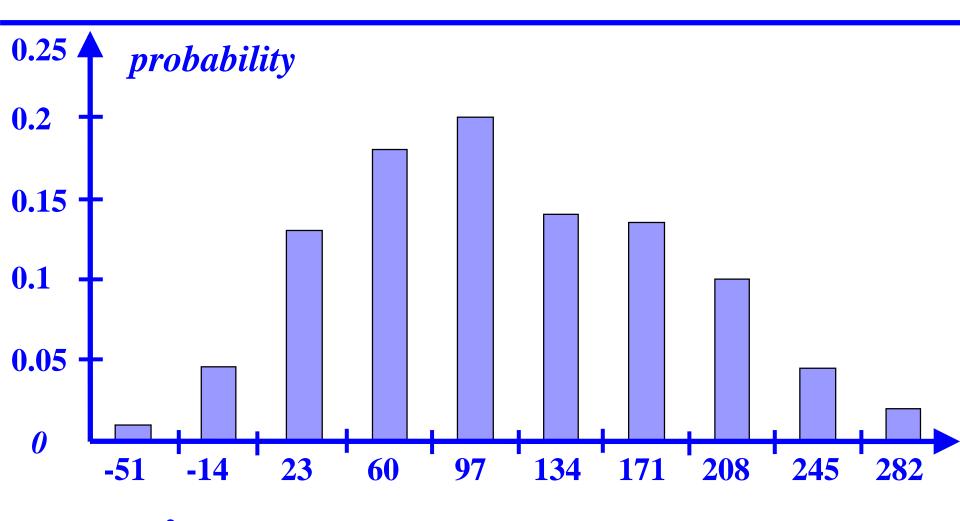
☐ For a 1,000 replications we obtain

process j	mean (\$)	standard deviation (\$)	$P\left\{\sum_{\tilde{n}} \tilde{n}^{j} < \theta\right\}$
1	91,160	46,970	0.029
2	110,150	72,300	0.046

SIMULATION RESULTS



SIMULATION RESULTS



$$NPV^2 = 110,150$$
 $\sigma = 72,300$

$$P\left\{\sum_{\tilde{n}} \tilde{n}^2 < \theta\right\} = 0.046$$

c.d.f.s OF THE TWO PROCESSES

